

MOLECULAR VARIATION AND BIOTECHNOLOGICAL APPLICATIONS OF ALGAE

Sona Mammadova^{1*}, Naila Guliyeva¹

¹Western Caspian University

Abstract: Food-significant algae (red, green, blue-green, and brown algae) are rich in vitamins, minerals, antioxidants, and other bioactive compounds, and they play an important role in both nutrition and medicine. In recent years, studies on molecular variation have allowed for a deeper understanding of the biological properties and beneficial components of algae by examining their genetic diversity. Through molecular approaches, the genetic variation of different species and populations can be identified, enabling the selection of more suitable and effective algae species for food and medical applications.

Keywords: Food-significant algae, molecular variation, genetic diversity, bioactive compounds, genetic markers, bioinformatics, food and medical applications.

***Corresponding Author:** mammadova.sona@outlook.com

Received: 15 December 2024; Accepted: 28 February 2025; Published: 30 March 2025

DOI:10,54414/OZXE6606

Introduction:

Algae are organisms with significant biotechnological potential in the fields of food, medicine, energy, and ecology. They possess diverse species and characteristics, and their biological diversity is extensively studied. Molecular variation is a key approach for studying the genetic diversity of algae and utilising this diversity in biotechnological applications. These studies help improve our understanding of the biological properties of algae and allow for more efficient use of their beneficial traits.

Food-significant algae offer numerous beneficial components for the human body due to their rich composition. Depending on the species, algae are rich in various nutrients. They contain valuable substances such as proteins, vitamins, minerals, omega-3 fatty acids, antioxidants, amino acids, and dietary fibre. These compounds make algae an ideal choice as a nutritional supplement and for therapeutic purposes.

Algae, particularly microalgae, have high protein content. Algal species such as Spirulina and Chlorella contain between 60% and 70% protein. The proteins found in algae include all the essential amino acids required by the human body, making them a high-quality source of protein. With these properties, algae are considered an indispensable food source in vegetarian and vegan diets.

Algae are also rich in many essential vitamins. In particular, they contain B-group vitamins, vitamin A (beta-carotene), vitamin C, and vitamin E. The vitamin B12 content of algae is especially important, as B12 is typically found only in animal products, yet it naturally occurs in some algal species. This is especially beneficial for individuals who follow vegan or vegetarian diets.

Algae are also rich in minerals. They offer essential minerals such as potassium, calcium, magnesium, phosphorus, iron, and iodine. These minerals are crucial for human

health, particularly for bone strength, immune system function, and the transport of oxygen in the blood. Algae, especially marine algae, contain high levels of iodine, which is essential for the proper functioning of the thyroid gland.

Algae are a valuable source of omega-3 fatty acids as well. These fatty acids, especially EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), contribute to cardiovascular health, reduce inflammation, and support cognitive function. Marine algae are considered an irreplaceable plant-based source of omega-3 fatty acids (Guliyev & Ismayilov, 2017)

Algae are also abundant in antioxidants. They contain compounds such as carotenoids and polyphenols, which help neutralise free radicals and prevent cellular damage. These antioxidants may slow the ageing process and reduce the risk of chronic diseases such as cancer (Alizadeh & Rzayev, 2018).

Lastly, algae are rich in dietary fibre. The fibres found in algae support digestive health, improve gut function, and help prevent constipation. They also aid in the elimination of toxins from the body, thereby promoting overall wellness.

Due to their nutrient-rich composition, food-significant algae are considered highly valuable for use as dietary supplements, health products, and functional foods. Their richness in diverse nutrients offers numerous health benefits and makes them an indispensable component of modern diets.

Molecular variation refers to changes that occur in an organism's genetic material, including DNA, RNA, or proteins. Algae possess a high degree of genetic diversity due to their ability to thrive in various environmental conditions. Studies on molecular variation help identify these genetic differences and examine their biological effects. In order to explore the genetic diversity of algae, researchers utilize genetic markers, DNA barcoding, gene expression profiling, and other molecular biology techniques.

Such investigations enable a better understanding of the adaptation capabilities, biological activities, and ecological compatibility

of different algal species within their respective ecosystems. Molecular variation studies are also critical for the conservation and sustainable development of algal genetic resources.

Algae have a wide range of biotechnological applications, particularly in food production, pharmaceuticals, cosmetics, bioenergy, and environmental protection. Understanding these applications on a molecular level is essential, as such research supports the selection of more beneficial and effective algal strains for industrial purposes.

Due to their richness in proteins, vitamins (especially B12), minerals, omega-3 fatty acids, and other nutrients, algae are extensively used in the food industry. Molecular variation studies allow for the identification of more nutritious and health-promoting algal species suitable for food production. For instance, algae such as Spirulina and Chlorella are widely used as dietary supplements due to their unique nutritional profiles, and exploring their genetic diversity can help enhance their productivity and quality. (Huseynova & Mammadova, 2020).

Algae are used in the field of medicine, particularly as a source of bioactive compounds with anticancer, antibacterial, anti-inflammatory, and antiviral properties. Molecular variation facilitates the more efficient production of these potential pharmaceutical components. For example, some algal species produce substances that may contribute to the development of novel treatments for cancer. Genetic variation studies provide essential data for the genetic improvement and optimisation of such species. (Huseynova & Mammadova, 2020).

Algae also play an important role in the cosmetics industry, as they offer beneficial minerals, vitamins, and antioxidants for skin health. Products derived from algae are used to protect and rejuvenate the skin. Molecular variation research enables the identification of more effective and skin-compatible algal strains for cosmetic applications (Nasirov & Veliyev, 2019). Algae can also be utilised in bioenergy production. It is possible to produce biodiesel and bioethanol from various algal species. Mo-

lecular variation aids in selecting species with enhanced energy production potential. Furthermore, algae absorb carbon dioxide from the atmosphere, helping to mitigate environmental pollution. Their genetic modification and adaptability allow for more efficient and scalable bioenergy processes.

Algae are also employed in environmental remediation and ecosystem restoration. They play a key role in water purification, prevention of soil degradation, and maintaining ecological balance. Molecular variation contributes to the identification of algae involved in these processes and supports the enhancement of their bioremediation capabilities (Rustamov & Shukurova, 2016).

Variation studies are essential for determining the genetic potential of algae and for using this potential more effectively in biotechnological applications. Algae are widely used in the food, pharmaceutical, cosmetic, bioenergy, and environmental sectors, and molecular variation accelerates the development of these fields. Genetic research facilitates the creation of more robust and beneficial algal strains, helping to shape the future of biotechnology (Rustamov & Shukurova, 2016).

Food-significant algae are also used for medical purposes. They are rich in vitamins, minerals, amino acids, and polysaccharides. However, the lack of comprehensive knowledge about their genetic diversity and biological properties limits their optimal use. Molecular variation research is a vital tool for overcoming these limitations (Ahmadov & Safarov, M., 2021).

These algae have a wide range of applications in the food, pharmaceutical, and cosmetic industries. Their genetic diversity determines the variety of their metabolic and bioactive properties, which in turn broadens the scope of their practical uses. Studies on molecular variation are essential for understanding the evolution and adaptation of the biological and chemical characteristics of algae.

Main research. In recent years, advances in molecular biotechnology have opened new opportunities for investigating the genetic structure of algae. These studies reveal the presence of genetic variation across different algal popu-

lations and species, and how this variation correlates with their biological activity. Molecular markers, such as SSR (Simple Sequence Repeat), AFLP (Amplified Fragment Length Polymorphism), and RFLP (Restriction Fragment Length Polymorphism), are widely used to assess the genetic diversity of algae. Through these markers, genetic variation at the species and population levels is examined (Tahmazov, R., & Hasanov, N., 2015).

Bioinformatics tools are also used in the study of algal genetic diversity. These tools enhance the speed and accuracy of analyzing algal genetic data. As a result, researchers can identify the variety and quantity of bioactive compounds in algae, such as polyphenols, polysaccharides, fatty acids, vitamins, and minerals. These analyses also provide insight into how different algal species adapt to specific environmental conditions and ecosystems (Alizadeh & Rzayev, 2018).

One of the most significant aspects of these studies is the ability to efficiently identify bioactive compounds associated with molecular diversity and to select genetically superior algal strains. This enables improvements in the quality of algae used in food and medical industries, leading to the development of more targeted and effective products. For example, certain algae with high levels of antioxidants and vitamins can be used as nutritional supplements.

Genetic diversity demonstrates how algae adapt to diverse ecosystems and environmental conditions and how they develop specific beneficial traits. This makes it possible to select more effective and application-specific algal species, particularly for use in the food and pharmaceutical sectors. The use of genetic markers to analyse various species and populations of algae enhances their classification and suitability for specific purposes (Guliyev & Ismayilov, 2017).

Environmental factors also influence the genetic structures and biochemical composition of algae. Conditions such as temperature, salinity, and light intensity can alter the production and content of bioactive compounds, which in turn determine how algae may be used in medical and food-related applications. Developments in biotechnology, especially in genetic

engineering and selection methods, allow for the enhancement of desirable traits in algae and the cultivation of more suitable species.

Climate change also affects this process. Rising global temperatures and other environmental changes may influence the diversity of algae and their impact on ecosystems. Therefore, the conservation and sustainable use of algal genetic resources is of particular importance (Nasirov & Veliyev, 2019).

In conclusion, the study of molecular variation in food-significant algae enables a deeper understanding of their biological characteristics and allows for more efficient use of these species in food and medical applications. Investigating the genetic diversity of algae and adapting them to environmental conditions will facilitate the selection of more productive and beneficial strains in the future. These studies are also crucial for ensuring food security, addressing health-related challenges, and promoting ecological sustainability.

Results and discussions:

Molecular variation studies of food-significant algae allow for a deeper understanding of their genetic structure and biological characteristics. Research in this field provides essential information for the more effective and targeted use of algae. By using molecular markers, scientists can identify both the genetic diversity and the range of bioactive compounds present in algal species, enabling more efficient selection for nutritional and medicinal purposes.

As a result, molecular variation studies expand the application of food-significant algae in biotechnology and pharmaceuticals. The outcomes of such studies pave the way for the development of healthier and more effective nutritional supplements and pharmaceutical products. Selecting algal strains with genetically superior traits is also important for ecological sustainability, as these strains are more adaptable to various ecosystems and can be cultivated in a more resilient and sustainable manner. A better understanding of the genetic diversity and bioactive potential of algae will help researchers discover new commercially valuable species in the future. These species will not only

enhance the quality of food products but also open new avenues in the biomedical and cosmetic industries. In conclusion, molecular variation research holds great potential both economically and ecologically.

Research on molecular variation and the biotechnological applications of algae enhances our understanding of the genetic potential of these organisms and promotes the efficient use of their beneficial properties. Algae are widely applied in the fields of nutrition, medicine, cosmetics, bioenergy, and environmental protection. By studying their genetic diversity through molecular variation, more productive, healthier, and effective strains can be selected. This approach accelerates the development of algal biotechnological applications, supports the creation of new bio-based products, and contributes to the advancement of existing technologies. Ultimately, molecular variation studies not only strengthen the ecological contributions of algae but also help unlock their full biotechnological potential.

Conclusion:

Molecular variation studies of food-significant algae provide critical insights into their genetic diversity, biological traits, and bioactive potential. These studies enable the identification and selection of genetically superior strains with enhanced nutritional and medicinal value, contributing to the development of effective biotechnological and pharmaceutical applications. By utilizing molecular markers, researchers can improve strain selection for ecological sustainability and adaptivity, promoting environmentally resilient cultivation systems.

Moreover, understanding genetic variation helps uncover new algal species with commercial potential in industries such as food, medicine, cosmetics, and bioenergy. This knowledge facilitates the creation of healthier nutritional supplements, novel therapeutic agents, and bio-based products, while also accelerating innovation in environmental protection technologies.

Overall, molecular variation research significantly enhances the economic and ecological utility of algae, making it a key driver for

sustainable development and technological advancement in multiple sectors.

References:

Huseynova, M. & Mammadova, T. (2020). Biocultural composition of food-important algae and their impact on human health. Baku State University Scientific News, 62(3), 45-52.

Alizadeh, A. & Rzayev, I. (2018). Molecular genetic analysis of algae and their application in food industry. Azerbaijan Journal of Biotechnology, 15(2), 79-86.

Guliyev, N. & Ismayilov, R. (2017). Classification of food-important algae and their health benefits. Azerbaijan Journal of Chemistry, 21(4), 123-130.

Nasirov, A. & Veliyev, K. (2019). Genetic diversity of food-important algae and utilization of biologically active substances. Azerbaijan Journal of Ecology and Natural Resources, 10(1), 59-67.

Ahmadov, F. & Safarov, M. (2021). Investigation of the role of bioactive compounds from seaweeds in the food and medical industry. Baku University Scientific News, 64(1), 101-109.

Rustamov, E. & Shukurova, Z. (2016). Molecular markers and genetic analysis of seaweeds. Ganja State University Journal, 23(2), 77-84.

Tahmazov, R. & Hasanov, N. (2015). Ecological status of food-important seaweeds and their application in food production. Azerbaijan Journal of Ecological Research, 12(3), 32-40.